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Abstract

Word embeddings have shown promise in a range of NLP tasks; however, it is
currently difficult to accurately encode categorical lexical relations in these vector
spaces. We consider one such important relation – hypernymy – and investigate
the feasibility of learning a function in vector space to capture it. We argue that hy-
pernymy is significantly harder to capture than the analogy tasks word embeddings
are traditionally evaluated on. We show that a simple neural network outperforms
previous systems at classifying hypernymy, and present experiments for learning
a function to predict the hypernym of a word in a vector space.

1 Introduction

Word embeddings such as GloVe [1] and Word2Vec [2] have shown promise in a variety of NLP
tasks. These word representations are constructed to minimise the distance between words with
similar contexts. According to the distributional similarity hypothesis, this means that similar words
should have similar representations, however they make no guarantees about more fine-grained se-
mantic properties.

It has been shown that continuous word embeddings encode various simple lexical relations, such
as singular-plural or country-capital as offsets in vector space. However, the completeness of these
embeddings for semantic tasks has not yet been fully established. Vilnis et al. [3] has shown that
word embeddings that encode a word as a distribution in space, rather than a point, outperform
other distributed representations on tasks that require knowledge of the uncertainty of a concept.
Recently, Faruqui et al. [4] has shown that retrofitting word embeddings to encode information
from semantic lexicons such as Wordnet[5] results in a significant improvement in semantic tasks.
Further, Socher et al. [6] showed that incorporating WordNet hypernymy features into an already
successful sentiment classifier improves end-to-end F1.

Hypernymy, or the is-a relation, is an important lexical relation for NLP tasks. However, the extent
to which word embeddings encode hypernymy has not been explored as extensively as the rela-
tions mentioned above. Knowledge of the hypernymy relation is critical for tasks such as Question
Answering [7], Natural Language Inference [8], and Coreference Resolution [9].

It would be appealing if information about hypernymy were evident from the word representations
themselves, removing the need for complementary resources. This would also assuage certain is-
sues inherent to semantic lexicons. First, these lexicons are high-precision and thus are not always
able to generalise to all terms in the vocabulary, whereas a soft measure of hypernymy based on the
embeddings themselves would be generalise more easily. This would also allow a smoother distinc-
tion between related word senses. Finally, from a purely theoretical perspective, it is interesting to
determine whether these embeddings are rich enough to capture hypernymy.

Most foregoing work on hypernymy has focussed on the task of classifying pairs of words according
to whether or not the relation of hypernymy holds between them. We show that using word em-
beddings and a feedforward neural net classifier, it is possible to outperform existing work on the
classification task.
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Given the success of word embeddings at predicting simpler relations, such as country-capital, and
the encouraging results of the classification task, we introduce a novel hypernymy prediction task,
and explore the extent to which hypernyms can be predicted in vector space. This is a much harder,
but also more useful task than classification. We show that we significantly outperform baselines on
hypernymy prediction.

2 Task Description

2.1 Classification Task

In the classification task, a pair of words 〈w1, w2〉 is given, and the objective is to classify the pair
as a positive example if w2 is a hypernym of w1, or a negative example otherwise.

Classification of hypernyms has been carried out with some success using co-occurrence-based vec-
tors. Weeds et al. [10] represented word pairs with the difference or concatenation of PPMI-weighted
co-occurrence vectors [11], and reported the performance of various classifiers. Of the classifiers, a
linear SVM achieved the best performance.1

Recently, [14] pointed out that using linear SVMs, as foregoing work has done, reduces the clas-
sification task to that of predicting whether in a pair of words, the second one has some general
properties associated with being a hypernym. This is due to the fact that multiplicative interactions
between the features of the hyponym and hypernym vector do not contribute to the classification
decision. As such, it is to be understood that experiments using the difference of vectors are not
exactly carrying out the task of classifying hypernymy as much as detecting whether the generality
of two terms in a pair differ.

2.2 Prediction Task

An emergent property of word embeddings is that certain relations between words can be encoded
as vector offsets between their representations [15]. Prior work in this area has focused primarily on
word analogy tasks. Given a small set of word pairs that exemplify some function from tokens to
tokens (such as “X is a city in state Y”), the task is to predict the image of some unseen word in this
function ([15, 1]). This problem has also been explored extensively using traditional word vectors
([16, 17, 18]).

We define a novel prediction task, in which, given the representation vhypo ∈ Rd of some word
whypo, the objective is to predict vhyper ∈ Rd which is the representation of its direct hypernym.

This task is more difficult than the analogy tasks for various reasons. First, we expect that accuracy
on this task will be strongly affected by polysemy. A word with multiple senses is likely to have
multiple, distinct tokens that can accurately be described as the direct hypernym for one or more of
its senses. As such, the relation of hypernymy is not a function, and so modelling it as a function
from Rd to Rd inherently incurs some amount of error. Second, hypernymy is a transitive relation.
A word such as cat has multiple hypernyms – feline, carnivore, placental, mammal – and which of
the hypernyms is the ‘direct’ hypernym is not well defined.

These theoretical concerns are depicted in the diagrams below. It is clear from observing even just
three hypernyms and their hyponyms, in Figure 1, that a simple offset or affine transformation is
unlikely to capture the relation of hypernymy for all words. Figure 2 indicates that the direct hyper-
nym according to WordNet is not always the most cognitively salient hypernym. We note that in the
hypernymy tree depicted in Figure 2, the links at a particular level in the tree (e.g. 〈dog , canine〉,
〈cat , feline〉, 〈elephant , pachyderm〉) are similar to each other and dissimilar to links at other levels
in the tree. However, in the absence of a reliable measure of the generality of a particular vector, this
property cannot be exploited.

Levy et al. [19] explained the reason why terms related by analogy are separated by a simple offset
in vector space – words that participate in an analogy are alike in all dimensions of similarity except
one. For example, a king and queen would share all contexts related to being a person, and being

1 Roller et al. [12] and Baroni et al. [13] also find that an SVM classifier achieves the maximum classification
accuracy
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Figure 1: Three hypernyms and their hy-
ponyms Figure 2: A subtree of the hypernymy tree

a royal, but would differ in the context related to being a man and a woman, respectively. In the
operation king−man+woman , this amounts to reducing the probability of man-associated contexts
and increasing the probability of woman-associated contexts represented by the resultant vector.

It is not immediately apparent, however, that the same arguments can be made for words in the
hypernym-hyponym relation. This would require the existence of contexts that co-occur selectively
with more general or less general words. However, since a word is more general or less general
only in relation to another word. Levy et al. [14] found that, surprisingly, certain contexts do appear
selectively with more general terms - for example, the word such appearing after a word indicates
hypernymy, while such appearing before a word indicates hyponymy. This is reminiscent of the
lexico-syntactic pattern “x such as y”, famously used in Hearst [20]. We attempt to leverage this
observation to improve performance on prediction.

3 Classification Task

3.1 Data

The data for the classification task is taken from Weeds et al. [10]. Two datasets are used, BLESS,
consisting of a subset of word pairs from the BLESS dataset[21], and WORDNET, consisting of a
larger set of word pairs, constructed similarly, taking pairs from WordNet. Both datasets consist
of pairs of words 〈w1, w2〉, labelled such that in a positive example, w2 is a hypernym of w1, and
in a negative example, w2 is a word that is semantically related to w1, but not a hypernym. This
ensures that the classifier is in fact learning to detect the relation of hypernymy between words, as
judgments based solely on distributional similarity would not be sufficient for accurate classification.
In contrast to the prediction task, ‘indirect’ hypernyms (e.g. 〈cat , entity〉) are considered positive
examples of hypernymy in this dataset.

3.2 Models

Following Weeds et al. [10], we represent each pair of words by the vector difference of their embed-
dings, using GloVe embeddings trained on Wikipedia. We then apply a feed-forward neural network
to classify whether the pair is in the hypernymy relation.
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BLESS WordNet
k-Fold Dev Test k-Fold Dev Test

WEEDS 74.0 – – 75.0 – –
MAJORITY 50.0 50.6 52.3 50.0 51.5 50.3
1-LAYER 76.4 90.4 93.0 76.5 74.7 74.3
2-LAYER 74.4 88.3 89.8 76.6 75.0 72.7

Table 1: Performance of our neural network classifiers and prior work [10] on existing hypernymy
classification datasets. We compare against prior work on their 10-fold cross-validation evaluation.
We additionally compare the majority class baseline, a 1 layer neural network, and a two layer neural
network on the development and test splits we generated.

The computation for the ith training example is described below, where x(i)hypo and x(i)hyper are the
embeddings of the words in the ith pair, y is the output classification, j ranges from 1 to n in a
n-layer neural network, and f is the tanh nonlinearity:

z
(i)
0 = x

(i)
hyper − x

(i)
hypo

z
(i)
j = f (Wjz

(i)
j−1 + bj)

y(i) = softmax (z(i)n )

(1)

Models were trained using SGD. L2 regularization and dropout were found not to improve perfor-
mance. Hidden layers of size 500 were used. The input embedding size was cross validated over
100, 200 and 300 dimension embeddings.

3.3 Results

We report our results in Table 1. Weeds et al. [10] evaluated their models using 10-fold cross-
validation, with the additional constraint of prohibiting shared words between the training and test
set of each fold; note that this makes this evaluation more difficult. We additionally split the data
into a standard train/development/test split, and report development and test numbers alongside the
cross-validation results.

A 1-layer NN using GloVe embeddings outperforms existing systems on the BLESS and the more
general WORDNET dataset. We observe that adding a second layer to the neural network deteri-
orates test performance, although Dev accuracy improves. Additional layers caused Dev error to
deteriorate; these results are not reported. Comparable results from using either the concatenation
or difference of the embeddings indicate that the difference of the vectors encapsulates most of the
information relevant to the classification task.

4 Prediction Task

4.1 Data

For the prediction task, data was prepared using the word pairs in the hypernymy tree of WordNet.
We use every pair of words 〈w1, w2〉 such that w2 is the direct hypernym of w1 and both w1 and
w2 are hyponyms of entity in WordNet. For each word pair, we use GloVe embeddings in 100
dimensions. GloVe vectors in 300 dimensions were also tested, however since these produced com-
parable results to the 100-dimension vectors, the results are not reported here. These vectors were
selected due to their generality and as they have been shown to improve performance on other NLP
tasks.[22, 23]
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4.2 Models

In each model, we learn a function f : Rd → Rd, such that if v1 ∈ Rd is the embedding of some
word w1, then f(v1) ∈ Rd is the embedding of its direct hypernym. We denote the true embedding
of the hypernym as y?(i), and the predicted embedding of the hypernym as y(i).

Offset We implement a basic model, Offset, that mimics the operation described in [15]. The
predicted vector in this model is obtained by adding a vector offset to the hyponym’s representation.
This model has a closed form solution given the training data, that minimises the distance of the
predicted vector to the actual hypernym.

Mikolov et al. [15] uses an offset derived from a prototypical pair for the relation. In the ab-
sence of such an archetypal pair for hypernymy, we calculate the offset as the average offset be-
tween all pairs in the training set. This averaging method was observed to improve performance in
Mikolov et al. [15].

voffset =
1

m

∑m
i=1 y

∗(i) − x(i)hypo

y(i) = x
(i)
hypo + voffset

(2)

Affine The simplest model we put forward is the Affine model, in which we learn an affine trans-
formation from hyponym to hypernym. We use the mean Euclidean distance as the loss between
y?(i) and y(i), and learn the parameters W and b.

y(i) =Wx
(i)
hypo + b (3)

FFNN Subsequently, we learn feedforward neural networks with increasing hidden layers. We use
models of the following form, in which Wj and bj are learned parameters, n varies between 3 and
6, and f is the tanh nonlinearity.

a
(i)
1 = x

(i)
hypo

a
(i)
j = f(z

(i)
j )(j > 1)

z
(i)
j =Wja

(i)
j−1 + bj

y(i) = z(i)n

(4)

These models are henceforth referred to as FFNN1, FFNN2, etc. For simplicity, we constrain the
number of hidden units in each hidden layer to be equal. Hidden layer sizes were chosen to be
scaled relative to the input size, where scaling factors of 0.5, 0.75, 1.0 and 1.5 were used. Models
were trained using SGD with L2 regularisation. The objective function minimised was the mean
Euclidean distance between y?(i) and y(i).

Proto Levy et al. [14] indicated that word vectors encode some notion of generality, which allows
classifiers to detect whether a particular word is likely to be a hypernym, regardless of the other
word in the pair. To leverage this property, we construct an auxiliary vector that is intended to
represent contexts of a prototypical hypernym. This was done in two ways - by taking the sum of
all the hypernym vectors in the training set, and by taking the sum of offsets between all hyponym-
hypernym pairs in the dataset. The latter method was more successful, and is reported on here. Note
that in the second case, the prototypical hypernym vector is equal to the offset vector in Offset,
and the FFNN+Proto is effectively interpolating between the Offset and FFNN models. In these
models, the cost is a linear combination of the objective from the FFNN model and the Euclidean
distance between the y(i) and the prototypical hypernym vector, where the relative weight of the two
components is a hyperparameter.
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NegSample Since the metric precision@k, described in Section 4.3 is not directly minimised by
minimising the average cosine distance or Euclidean distance, we use negative sampling to minimise
a more relevant quantity. The new loss function is defined as follows :

Loss(xhypo; θ) = 1− cos(ŷhypo, y?hypo) +
k∑

i=1

max{0, cos(ŷhypo, xwk
) + margin} (5)

k is the number of negative samples – k words were selected by uniformly sampling from the vectors
in the training set. The value of margin used was 0.5.

4.3 Results

We report performance on our novel prediction task in Table 2. Following Mikolov et al. [2], we
measure precision@1 and precision@10 – whether the predicted vector falls within the top-1, or
top-10 nearest neighbors of the actual hypernym vector. We also report precision@40 – correspond-
ing to the correct vector being in the top 0.01% of candidate vectors.2

P@1 P@10 P@40 Test
Train Dev Train Dev Train Dev P@1 P@10 P@40

NN 0.38 0.47 1.99 1.80 5.12 4.76 0.40 1.96 5.19
Offset 0.69 0.84 6.96 6.63 14.84 14.21 1.07 7.55 14.55
Affine 1.48 1.37 17.24 14.29 34.08 30.72 1.37 15.43 32.22

FFNN1 2.18 1.94 19.87 16.39 37.42 32.66 - - -
FFNN2 2.31 2.17 19.94 16.58 37.49 33.57 - - -
FFNN3 2.40 2.21 20.09 16.73 37.96 34.18 - - -
FFNN4 2.76 2.48 21.33 17.07 38.98 34.15 2.19 17.72 35.18

FFNN1+proto 2.26 2.06 19.53 16.50 37.36 33.46 - - -
FFNN2+proto 2.20 2.13 19.80 16.12 37.68 32.39 - - -
FFNN3+proto 2.48 2.21 20.18 16.58 37.58 33.16 2.10 17.05 34.49

Table 2: Performance on the prediction task test set, in percent precision. NN is taking nearest
neighbors; OFFSET is the offset method in [2]; AFFINE learns an affine transformation. FFNN are
feedforward neural network models, +PROTO indicates that distance to a prototypical hypernym was
included in the objective. Results are reported for 100-dimensional word embeddings.

An important thing to note here is the mismatch between training and test objectives: except in the
negative sampling models, at training time, we are optimising cosine or Euclidean distance, whereas
at test time we are finding k-best nearest neighbours.

The size of the output space is illustrated by the naı̈ve random baseline – selecting a random vector
from the vocabulary results in a precision@k of 0% for all three values of k.

As a more realistic baseline, we use the NN model. In this model, for a word w1 with embedding
v1, the predicted vector is the GloVe vector whose cosine distance to v1 is minimal – its nearest
neighbour. Since semantically related words are expected to be close in vector space, this should be
a strong baseline. Any improvements above this baseline indicate that a model is learning a notion
of hypernymy that is richer than semantic similarity. However, this baseline too does not exceed
0.5% precision@k, which is further evidence of the difficulty of the prediction task.

The Offset model was able to achieve precision@1 of 29.2% [15] for syntactic relations between
nouns. Previous comparable explorations based on semantic relations use a small dataset anno-
tated to allow computation of rank correlation, and, as such, report only rank correlation and not
precision@k. In our experiments, Offset achieves precision@1 of 0.84% on the dev set. This is the
best possible performance for this model, as there is a closed-form solution minimising loss on the
training set.

2The size of the GloVe vocabulary is 400,000.
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As expected, Affine outperforms Offset, and we observe increased precision upon the addition of
hidden layers. Most notable, precision@40 shows an increase of 16% between Offset and Affine
models, and thereafter continues to increase.

The additional consideration of the prototypical vector improved precision in the case of the FFNN1
model. This may indicate that there are indeed contexts that are characteristic for hypernyms, how-
ever, this observation alone is not sufficient to account for the relation between hyponym and hyper-
nym.

As the negative sampling model performed very poorly, the results are not reported.

Because of time constraints, models with over 4 hidden layers (for the FFNN model) and over 3
layers (for the model with the FFNN+proto model) were not tested, although dev precision had not
begun to decrease.

A feed-forward neural net with four hidden layers achieved the best precision@k on the dev set for
all values of k. It was able to achieve a precision@1 of 2.19% on the test set, more than double the
precision achieved by the offset model used in previous work on word relations.

Polysemy To determine the extent to which polysemy affected prediction accuracy, we carried
out preliminary experiments restricting the word pairs to those in which both the hypernym and
hyponym were monosemous. Although it was encouraging that experiments on these sets achieved
higher precision, note that the Nearest Neighbours baseline also increases. This seemed to indicate
that gains were solely due to monosemous words generally being lower-frequency and hence falling
in a sparse area of the vector space. It was determined that accounting for polysemy would not be
the most productive direction in which to continue work.

P@1 P@10 P@40
NN 0.73 4.74 9.47
Offset 1.00 19.20 29.23
Affine 2.15 16.76 31.23

Table 3: Performance on the prediction task, restricting to hypernymy pairs where the hyponym is
monosemous, using 300-dimension embeddings.

5 Conclusion

We have shown that commonly employed word embedding spaces encode hypernymy to a sufficient
extent to outperform prior work on the hypernymy classification task. We have also demonstrated
the potential of word embedding spaces in the task of predicting hypernyms, achieving precision@1
of up to 2.19%, and precision@40 of up to 35.18%. The models described take advantage of recent
insights on the failings of existing work on hypernym classification, and show promising preliminary
results for the hypernym prediction task.
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AS Human Language Technologies (NAACL HLT 2015), Denver, CO, 2015.

[15] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746–751, 2013.

[16] Peter D Turney. A uniform approach to analogies, synonyms, antonyms, and associations. In
Coling, 2008.

[17] Peter D Turney. Distributional semantics beyond words: Supervised learning of analogy and
paraphrase. arXiv preprint arXiv:1310.5042, 2013.
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