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Abstract

Natural language generation for task-oriented dialogue systems
aims to effectively realize system dialogue actions. All natu-
ral language generators (NLGs) must realize grammatical, nat-
ural and appropriate output, but in addition, generators for task-
oriented dialogue must faithfully perform a specific dialogue act
that conveys specific semantic information, as dictated by the
dialogue policy of the system dialogue manager. Most previous
work on deep learning methods for task-oriented NLG assumes
that generation output can be an utterance skeleton. Utterances
are delexicalized, with variable names for slots, which are then
replaced with actual values as part of post-processing. How-
ever, the value of slots do, in fact, influence the lexical selec-
tion in the surrounding context as well as the overall sentence
plan. To model this effect, we investigate sequence-to-sequence
(seq2seq) models in which slot values are included as part of
the input sequence and the output surface form. Furthermore,
we study whether a separate sentence planning module that de-
cides on grouping of slot value mentions as input to the seq2seq
model results in more natural sentences than a seq2seq model
that aims to jointly learn the plan and the surface realization.
Index Terms: generation, dialog, deep learning, sentence plan-
ning

1. Introduction

Natural language generation for task-oriented dialogue systems
aims to effectively realize system dialogue actions. All natu-
ral language generators (NLGs) have significant, complex con-
straints on the grammaticality, naturalness and appropriateness
of their output, but, unlike chat-based systems, the NLG in task-
oriented dialogue must faithfully perform a specific dialogue
act that conveys specific semantic information, as dictated by
the dialogue manager’s (DM’s) policy [1, 2]. Table 1 shows
the semantics of dialogue acts that the DM might specify in the
restaurant domain (in gray), while Rows 1 and 2, and Rows 4
and 5 illustrate how a single semantic specification from the DM
can result in several different outputs from the NLG.

In order to train the NLG for task-oriented dialogue, it
is thus necessary to provide training data that represents the
mapping from semantics to surface realizations[3]. To date,
this has meant that the data collection must target the partic-
ular task, whereas NLG for chatbots can often rely on large-
scale, harvested, social media dialogues [4, 5, 6, 7]. The re-
sult is that datasets for training NLGs for task-oriented dia-
logue are typically smaller in scale than those used for chatbots
[8,9,10, 11, 12, 13].

To combat the effects of data sparsity, a technique that is
commonly used in task-oriented generation is that of delexical-
ization [14, 15]. In the input to NLG, the mentions in each
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Table 1: NLG for Restaurants |

# recommend (restaurant_name= Au Midi,
neighborhood = midtown, cuisine
Au Midi is in Midtown and serves French food.
2 There is a French restaurant in Midtown called Au Midi.

french

—

recommend (restaurant_name= Emilio’s,
neighborhood Brooklyn, cuisine italian)
3 There is an Italian restaurant in Brooklyn called Emilio’s.

recommend (restaurant_name= Loch Fyne,
neighborhood city centre, cuisine
seafood)

4 Loch Fyne is in the City Center and serves seafood food.

There is a seafood restaurant in the City Centre called Loch Fyne.

W

utterance are described in terms of slots and values. In delex-
icalization, slot values occurring in training utterances are re-
placed with a placeholder token representing the slot, such that
weights can be shared between similar utterances. For example,
Rows 6 and 7 of Table 2 are delexicalized versions of Rows 1
and 2 of Table 1. At generation time, the NLG generates outputs
with these placeholders, which are then filled in from a semantic
frame, or copied over from the input specification to form the fi-
nal output [15, 14]. This is especially beneficial in the presence
of ‘open-vocabulary’ slots such as restaurant names, which can
take on values from a virtually unlimited set.

Table 2: Delexicalized Representations

# recommend (restaurant_name= Au Midi,
neighborhood = midtown, cuisine = french)

6 restaurant_name is in neighborhood and serves cuisine
food.

7 There is a cuisine restaurant in neighborhood called
restaurant_name.

Thus, in cases where it is valid to assume that the slot values
appear verbatim in the utterances, and the surrounding tokens
are independent of the slot values, delexicalization is an effec-
tive strategy for reducing the amount of training data needed.
This assumption is, however, violated in many cases that oc-
cur even in simple task-oriented NLG scenarios. Some slots
are nondelexicalizable [14]. Moreover, slot values do influence
the structure of an utterance, as well as localized decisions such
as the choice of tokens surrounding the mention of the slot in
the utterance, and aspects of syntactic choice. Production of
this underlying structure in the traditional NLG architecture is
called sentence planning[16, 17].

Recently, deep learning methods, such as Semantically
Conditioned LSTM (SC-LSTM) and sequence-to-sequence
(seq2seq) models have been shown to be effective for NLG
in task-oriented dialogue [14, 18, 19, 20]. However, deep
learning methods have not attempted to replicate sentence plan-
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ning phenomena, such as aggregation, lexical choice, dis-
course structuring, and context sensitivity, that were often the
focus of previous statistical language generation approaches
[21,22, 23,24, 25,26, 27]. While deep learning models theoret-
ically have the capacity to learn such higher-level semantically-
driven phenomena from data, in practice such behavior tends to
require large amounts of data that are prohibitively expensive
for task-oriented NLG.

In this paper, we present a dataset selected to encourage
aggregation and discourse structuring. We work with seq2seq
models that take as input slot values for scalar slot categories as
part of the input sequence. We compare the lexicalized outputs
from such models with previous approaches that output delexi-
calized sequences, and then generate the final output with post
processing to insert slot values. To study the effect of sentence
planning, we incrementally introduce supervision for sentence
planning phenomena as input to the model.

2. Motivation

Slot values affect the utterance skeleton in NLG in several ways.
The scalar valued slots in our restaurant domain schema (Ta-
ble 3) introduce additional opportunities for variation.

Table 3: Restaurant Entity Schema. Example values for cate-
gorical slots are shown. All scalar valued slots share the range
of four possible values.

[ [ Slot [ Possible value |

Name Au Midi

categorical | Neigborhood Midtown
Cuisine French
Decor excellent

scalar Food quality good
Service decent
Value for money mediocre

* Slot values impact lexical choice. For example, french as
a cuisine type is realized as French food in Row 1 of Table 1,
but seafood as a cuisine type cannot be realized as seafood
food: see Row 4. However when the cuisine slotis in a
different syntactic position, e.g. seafood restaurant in Row
5, a special rule about the seafood value is not needed.
Compare Row 5 with Row 2. Determiners also depend on
the slot-value, such as the difference in determiner between
midtown and city centre in Rows 2 and 5.

* When an utterance realizes multiple slots, the most natural
utterance skeleton often depends on the values of the slots.
If the slot values are the same, humans typically group them
together in a single clause, as in Row 8 of Table 4. If the
values are different, contrastive discourse connectives may be
used as in Row 9 in Table 4.

Thus, delexicalized representations lose important informa-
tion that could be used for sentence planning. This has made
it impossible to directly address the issues described above in
previous work on seq2seq models. In the following section, we
describe extensions to a standard seq2seq generation model. We
attempt to learn to group mentions of similar slots together (slot
aggregation), and to structure sentences with discourse markers
(discourse structuring).

3. Neural Models for NLG

We first describe the sequence-to-sequence model that is the ba-
sis for most neural NLG systems, and then some extensions that
demonstrate the need for sentence planning.
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Table 4: NLG for Restaurants Il

recommend (restaurant_name= Loch Fyne,
food_quality = excellent, cuisine = seafood,
decor = excellent, service excellent)

8 | Loch Fyne is a pretty solid restaurant. They specialize in seafood cui-
sine, and people report the decor, service, and food quality are all

excellent.

recommend (restaurant_name= Emilio’s,
food_quality = excellent, location = city
centre, cuisine = italian, decor = decent,
service = decent)

9 | Emilio’s decor and service are both decent, but its food quality is
nothing short of excellent. It serves Italian food and its in the City
Centre.

3.1. Sequence-to-sequence (Seq2seq) model

Neural models of generation decode the natural language out-
put — usually a sequence of tokens — from a vector representa-
tion of the semantic frame. In end-to-end dialogue systems, the
vector representation may be the output of the preceding com-
ponent in the pipeline. In standalone NLG systems like ours,
the structured semantic frame input is transformed into a vector
by an encoder of some sort. In previous work the vector rep-
resentation is either manually constructed [14], or produced by
an LSTM encoder (yielding a traditional seq2seq setup)[28]. In
all experiments, we use a seq2seq encoder-decoder model with
attention, first introduced in machine translation [29].

The input to the seq2seq model is a sequence of tokens
xt,t € {0,...,n} that represent the dialogue act and associated
arguments. Each x; is associated with a learned embedding vec-
tor w; of some fixed length. The encoder reads all the input vec-
tors and encodes the sequence into a vector /,. Specifically, at
each time step ¢, we compute the hidden layer /; from the input
wy and hidden vector at the previous time step /,_1, following

hy :f(xhht—l)

As detailed in the next section, we formulate the input tokens
to the encoder in multiple ways, for example, the slot values
could be represented as independent tokens or jointly with the
slot tags, or the input could be a flat frame or a plan that can
include multiple sentences. The second phase of the sequence-
to-sequence model, the decoder, is common to all experiments.
The decoder LSTM generates each word of the sentence as con-
ditioned on the context vector ¢;. The probability distribution p;
for each candidate word at time ¢ is calculated following

St :f()’t—hstfhcz)

pr = softmax(s, 1)

where s, is the hidden state of the decoder LSTM at time ¢. The
context vector is a weighted average of the hidden states of the
encoder:

n
= Z O hy
k=1

n
oy =exp(e )/ Z exp(er,j)
j=1
erj=V(s—1,h)

where V is usually implemented as a feed-forward network.

3.2. Extensions

The input to the seq2seq model is a sequential representation of
a semantic frame, and the output is a sequence of tokens. We
consider variations that demonstrate the influence of slot val-
ues on the surface form. In each setup, we select a strategy for



Table 5: Input tokens for the various mention representations.
In SEQUENTIAL and JOINT, there is a single vector w; for each
Xj, which is read by the encoder. In CONCAT, each x; j has a
unique w; j, and w; is the concatenation of w; | and w; .

Mention
‘ rep. Input sequence ‘
SEQ Lo [ X [ X2 [ X3 [ Xiga | \
| decor [ decent | service | good [ cuisine | ... |
‘ Xi ‘ Xit1 ‘ Xi+2 ‘
JOINT | (decor, decent) [ (service, good) [ (cuisine, null) |
} Xi1 Xip | Xt | Xiplo } Xipod | Xir22 }

decor | decent | service | good | cuisine | null

mention representation (Table 5) and a strategy for plan supervi-
sion (Table 6). The mention representation strategy determines
how a mention — a slot, value pair occurring in the semantic
frame — is represented in the input sequence. The plan super-
vision strategy determines the amount of planning information,
gleaned from the overall statistics of the human-generated ex-
amples, to be provided to the model at training and inference
time.

3.3. Mention representation

A seq2seq model operates on a sequence of embeddings repre-
senting the input. All input sequences in our experiments have
units denoting the dialogue act as a prefix and suffix, while in-
tervening units represent slot-value pairs, or mentions. When
mentions are delexicalizable, it is not necessary to supply the
value to the model. In contrast, to generate utterances from this
dataset, we expect that it will be important for the LSTM to be
aware of the slot-values in the frame. We experiment with se-
quences using different units as different ways of associating a
slot value with a slot name, in which the coupling of slots and
values becomes increasingly explicit. These methods are sum-
marized in Table 5. We use the following three representations:

* SEQUENTIAL: In a sequential representation, we produce a
sequence in which a unit representing a slot is followed in the
sequence by a unit representing its value, and the dependence
between slots and values is encoded implicitly in the ordering.

e JOINT: In a joint representation, each unit in the sequence
represents a combination of slot and value.

* CONCAT: A concatenated representation provides an inter-
mediate variation, in which each slot and value corresponds
to a unique embedding, but the slots and values are associated
through concatenation of the embeddings.

We first performed experiments to determine the best men-
tion representation, then, using this representation, continued to
experiment with various forms of plan supervision.

3.4. Plan supervision

Traditionally, sentence planning occurs as a preliminary step,
in which all the content of the utterance is considered at once,
and decisions about ordering and grouping of slots are made at
a global level. Subsequently, each individual sentence is gener-
ated with a subset of the required information [24]. We use a
lightweight definition of sentence planning, in which the group-
ing of slot mentions into sentences, and the ordering of these
sentences in the utterance together determine a plan. This re-
quires no human annotation beyond tokenization and identify-
ing slot mentions. We experiment with generating the entire
sentence at once, as well as generating sub-parts of the plan
individually. Table 6 provides examples of the following plan-
supervision strategies:
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Table 6: Input tokens for the various plan supervision strate-
gies. All slots are mentioned for NONE; slots are grouped into
subsequences for FLAT and FINE, POSITIONAL adds tokens to
indicate if a sentence is in the beginning or inside of an utter-
ance.

[ Plan sup. | Input tokens |
[ NONE [ decor [ decent | service | decent | quality [ good |
‘ ELAT [ decor [ decent | service | decent | [ \
| quality | good | \ \ \ |

POSITIONAL [ <B> [ decor [ decent | service | decent | \

| <I> [ quality | good | \ \

* NONE: No plan is provided to the model, and the entire utter-
ance is generated from a representation of the entire frame.

* FLAT: The slot groupings are derived externally using corpus
statistics, and each sentence in the utterance is produced using
a separate input sequence, with no information on the context.

* POSITIONAL: We add a token to the input sequence both at
training and inference time to indicate the sentence’s position
in the utterance, (beginning or inside).

4. Data

Our experiments use utterances in the restaurant domain, using
a schema similar to that of Zagat ratings [24]. The slots are
shown in Table 3 . Slots are categorized according to the values
that they can take. Three slots have categorical values, such as
restaurant names or city names. The set of values is not nec-
essarily closed, and there is no particular relation between the
values in the set. Four slots take scalar values. Each utterance
recommends a restaurant, mentioning some of its qualities. We
deliberately curtail the number of slots and possible values, as
our intention is to isolate the problems of slot aggregation and
discourse structuring. Although the dataset is simple in this re-
spect, it is rich in variations of slot combinations.

4.1. Dataset schema

An NLG system must generally be able to produce multiple di-
alogue acts, e.g. request, inform, and others. Here we fo-
cus on recommend dialogue acts with multiple slot mentions,
where the issues of aggregation and discourse structure are most
pertinent, e.g. as in the examples in Tables 1 and 4.

We construct semantic frames so that every frame mentions
all three categorical slots and three scalar slots, totaling 6 slots
per frame. See Table 3. Here, each scalar value slot (food
quality, decor, service and value) takes a value from mediocre,
decent, good, or excellent. We cover the entire space of slot
combinations and value assignments, resulting in 4 - 4% = 256
unique frames. As a result, the dataset contains examples where
all slot values are different, and ones where two or more values
are the same. Previous work also experiments with utterances
mentioning up to 8 slots. [14, 30]. However since slots only
took categorical values with disjoint ranges, aggregation across
slot values could not occur.

Thus, our dataset is novel in three ways: (1) all utter-
ances contain 6 slots, which is relatively more challenging
for an LSTM as compared to 1-2 slots used in some previous
work[14], (2) slots share the same value space, which supports
aggregation; (3) the emphasis on scalar valued slots to elicit the
use of discourse cues.

4.2. Data collection

We elicited 7 surface realizations for each semantic frame using
Mechanical Turk. This resulted in many different highly natural



Table 7: Results for mention representation and plan supervision. * indicates CONCAT values significantly better than SEQ; T indicates
significantly better than HUMAN-S (both p < 0.05). Bold values of POSITIONAL are significantly better than NONE. (p < 0.05).

Slot Prec. | Scalar Prec. | Slot Rec. | Naturalness | Syntax | Overall | # uniq. sents

SEQ 1.0 0.6 92.24% 272 3.04 2.75 100

. JOINT 1.0 0.86 86.26% 2.42 275 2.41 101
Mention - - =

representation CONCAT 1.0 0.98 95.33%* | 2.80 2.98 2.87 126

HUMAN-G 1.0 1.0 94.98% 2.65 2.93 2.76 313

HUMAN-S 1.0 1.0 95.29% 2.64 2.87 2.79 325

Plan NONE - - 97.22% 2.69 2.80 2.68 126

supervision FLAT - - 96.99% 2.68 2.93 2.74 152

POSITIONAL | - - 96.99% 2.74 3.02 2.81 144

HUMAN-S - - 96.01% 2.72 291 2.83 325

utterances, where Turkers produced many different phrasings
such as those in Rows 1, 2, 3, and 4 in Table 1. Rows 8 and 9
in Table 4 shows how Turkers both naturally aggregated slots,
without being told to explicitly, and used discourse cues such
as all, both and but. They also appropriately used anaphoric
forms such as they and it as shown in Rows 8 and 9. After
filtering, the dataset contains 1662 utterances, divided into train,
development and test in the ratio 8:1:1.

5. Experiments
5.1. Evaluation

Our evaluation experiments solicit judgements from raters and
trained annotators for both objective and subjective metrics. We
attempt to have more detailed measures than what automatic
metrics such as BLEU provide[31, 32, 33]. Turkers were pre-
sented with HITs containing three utterances for a particular
sentence plan and asked for judgements on each utterance indi-
vidually, and then asked to compare the three utterances overall.
Subjective evaluation. Turkers rated each utterance on a 5
point Likert scale as to whether it was natural and grammat-
ically correct. We then asked them to comparatively evaluate
three utterances at a time for their overall goodness, again on a
5 point Likert scale. Ratings ranged from 0 (worst) to 4 (best).
Objective evaluation. Turkers were asked to indicate if each
slot occurred with the correct value; this is reported in Table 7
as slot recall. We also asked them separately to report whether
there were any extraneous slots present (slot precision). As this
was difficult for the raters to report accurately, one of the au-
thors (a native speaker) judged slot precision for a sample of 50
utterances produced by each model. We also separately evalu-
ated the correctness of scalar values assignment to slots in this
sample. These are reported as Scalar precision in Table 7.

5.2. Results and Analysis

We first compared various mention representation strategies in
an LSTM setting akin to NONE plan supervision. Along with
the generated utterances, the raters were presented with human-
generated alternatives of two kinds: HUMAN-GENERAL and
HUMAN-SPECIFIC. In each of these, given a frame to generate
from, we attempt to select an utterance from the training set that
matches this frame. In HUMAN-SPECIFIC, we attempt to match
both slots and values, whereas in HUMAN-GENERAL we Sim-
ply attempt to match slots. This is essentially template-based
generation, where a template is induced from the human utter-
ances, and used for realization, as in other work [34]. Table 7
summarizes the results of our experiments.

In this evaluation, we found that CONCAT outperformed the
simple sequential representation significantly in terms of recall
and overall rating. In addition, CONCAT surprisingly outper-
formed HUMAN-S significantly in naturalness. Thus, we used
CONCAT as the mention representation strategy in the plan su-
pervision experiments.
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In the plan supervision experiments, we compared the two

forms of plan supervision with the baseline of NONE, which was
equivalent to CONCAT in previous experiments, and the human-
generated set HUMAN-S. We found that the POSITIONAL model
was able to improve significantly on syntax ratings, while main-
taining overall and naturalness scores.
Comparison to human-generated sentences. We note that in
some instances we appear to outperform humans, for example,
on naturalness (CONCAT). The high naturalness score of CON-
CAT can be attributed to the model gravitating towards ‘safe’
— commonly occurring, grammatical — utterance patterns. In
contrast, the data for HUMAN-S is generated by crowd work-
ers. Thus, it has more stylistic variation, and may include lower
quality examples (such as if a rater forgot to mention a slot).
This results in higher variance in the scores for this baseline.
Our models have a smoothing effect, which, while reducing
stylistic variation, also allows them to produce high-quality ut-
terances when trained on a dataset of inconsistent quality.

Scalar Precision. Our setup is novel in that scalar values are
shared between slots. The scalar precision measure evaluates
whether the correct values are associated with each slot for the
scalar slots. Since this is not a subjective judgement, we had a
trained annotator inspect a random sample of 50 sentence plans
and their model outputs to gauge scalar precision. None of the
realizations contained additional slots with values different than
those specified in the semantic frame. However, CONCAT was
significantly less likely than the SEQ model to have scrambled
slot values across slots, as shown in Table 7.

Diversity. In experiments for mention representation, we find
that the model converges to use sentence plans that appear fre-
quently in the training data. While this results in high scores
on syntax, the diversity of utterances produced by this model is
lacking. In particular, CONCAT and HUMAN-S produced a total
of 126 and 325 unique sentences in the test set, respectively. We
also note that of the 1662 utterances in the dataset, the sentence
plans of 524 utterances are accounted for by the 4 most frequent
sentence plans. This is addressed in our experiments with plan
supervision. We found that FLAT improved the number of dis-
tinct sentences produced by 20%.

6. Conclusions

In this work, we propose slot-value informed sequence-to-
sequence models with attention for language generation in dia-
logue systems, where the slot values in the system action, as
well as the slot tags are part of the input sequence. We in-
vestigate three ways of representing the values in the input se-
quence. Furthermore, we study if the models can learn to plan
the sentences given the limited amount of training data, or if
they would benefit from being presented a plan in the form of
multiple sentences as part of the input. In subjective evalua-
tions, we show that the slot values represented as vectors con-
catenated to vectors of slot names results in best overall quality.
Furthermore, adding a plan to the input further improves quality
and diversity.
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