
Building a Conversational Agent Overnight with Dialogue Self-Play

Pararth Shah1, Dilek Hakkani-Tür, Gokhan Tür, Abhinav Rastogi,
Ankur Bapna, Neha Nayak, Larry Heck

Google AI
Mountain View, CA, USA

Abstract

We propose Machines Talking To Machines
(M2M), a framework combining automation
and crowdsourcing to rapidly bootstrap end-
to-end dialogue agents for goal-oriented dia-
logues in arbitrary domains. M2M scales to
new tasks with just a task schema and an API
client from the dialogue system developer, but
it is also customizable to cater to task-specific
interactions. Compared to the Wizard-of-Oz
approach for data collection, M2M achieves
greater diversity and coverage of salient dia-
logue flows while maintaining the naturalness
of individual utterances. In the first phase, a
simulated user bot and a domain-agnostic sys-
tem bot converse to exhaustively generate di-
alogue “outlines”, i.e. sequences of template
utterances and their semantic parses. In the
second phase, crowd workers provide contex-
tual rewrites of the dialogues to make the ut-
terances more natural while preserving their
meaning. The entire process can finish within
a few hours. We propose a new corpus of
3,000 dialogues spanning 2 domains collected
with M2M, and present comparisons with pop-
ular dialogue datasets on the quality and diver-
sity of the surface forms and dialogue flows.

1 Introduction

Goal-oriented dialogue agents trained using super-
vised learning methods work best when trained on
dialogues of the same task. However, when de-
veloping a dialogue agent to assist a user for com-
pleting a new task, for example scheduling a doc-
tors appointment via an online portal, a dataset of
human-agent dialogues for that task may not be
available since no dialogue agent exists for inter-
acting with that particular API. One popular ap-
proach is to collect and annotate free-form dia-
logues via crowdsourcing using a Wizard-of-Oz

1 Correspondence to pararth@google.com

Figure 1: Our proposed M2M framework: (1) the di-
alogue developer provides a task schema and an API
client, (2) automated bots generate dialogue outlines,
(3) crowd workers rewrite the utterances and validate
slot spans, (4) a dialogue model is trained with super-
vised learning on the dataset. The whole process can
complete in under 8 hours.

setup (Wen et al. (2016); Asri et al. (2017)). How-
ever, this is an expensive and lossy process as the
free-form dialogues collected from crowdworkers
(i) might not cover all the interactions that the
agent is expected to handle, (ii) might contain dia-
logues unfit for use as training data (for instance if
the crowd workers use language that is either too
simplistic or too convoluted), and (iii) may have

ar
X

iv
:1

80
1.

04
87

1v
1

 [
cs

.A
I]

 1
5

Ja
n

20
18

errors in dialogue act annotations, requiring an ex-
pensive manual filtering and cleaning step by the
dialogue developer.

Another approach, popular among consumer-
facing voice assistants, is to enable third-party
developers to build dialogue “experiences” or
“skills” focusing on individual tasks (e.g. Di-
alogFlow1, Alexa Skills2, wit.ai3). This provides
the dialogue developer with full control over how
a particular task is handled, allowing her to in-
crementally add new features to that experience.
However, this approach relies heavily on the de-
veloper to engineer every aspect of the conversa-
tional interaction and anticipate all ways in which
users might interact with the agent for completing
that task. It is desirable to expand this approach to
make it more data-driven, bringing it closer to the
Wizard-of-Oz approach popular in the dialogue re-
search community.

We present Machines Talking To Machines
(M2M), a functionality-driven process for training
dialogue agents. The primary goal is to reduce the
cost and effort required to build dialogue datasets
by automating the task-independent steps so that
a dialogue developer is required to provide only
the task-specific aspects of the dialogues. Another
goal is to obtain a higher quality of dialogues in
terms of: (i) diversity of language as well as dia-
logue flows, (ii) coverage of all expected user be-
haviors, and (iii) correctness of supervision labels.
Finally, this framework is aimed towards boot-
strapping dialogue agents up to the point where
they can be deployed to serve real users with an
acceptable task completion rate, after which they
should be improved directly from user feedback
using reinforcement learning.

Previous work for building semantic parsers
(Wang et al. (2015)) and parsers for mapping
natural language questions to structured queries
(Zhong et al. (2017)) rely on crowd sourcing
to map automatically generated structured repre-
sentations to single-shot natural language utter-
ances. However, generating multi-turn dialogues
in this manner requires co-ordination among mul-
tiple participating agents. Inspired by recent
AI game-playing literature (Silver et al. (2016,
2017)), we introduce a notion of “dialogue self-
play” where two or more conversational agents in-

1https://dialogflow.com
2https://developer.amazon.com/alexa-skills-kit
3https://wit.ai

teract by choosing discrete conversational actions
to exhaustively generate dialogue histories. In this
work, we employ an agenda-based user simulator
agent (Schatzmann et al. (2007)) and a finite state
machine based system agent for the self-play step.

In Section 2 we describe the mechanics of M2M
and in Sections 3 and 4 we discuss the user simula-
tion and crowdsourcing aspects of our method. In
Section 5 we present datasets collected with this
framework that we are releasing with this paper
and in Section 6 we evaluate our approach by com-
paring our datasets with popular dialogue datasets.
We conclude with a discussion of related work in
Section 7.

2 M2M

At a high level (Figure 1), M2M connects a de-
veloper, who provides the task-specific informa-
tion, and a framework, which provides the task-
independent information, for generating dialogues
centered around completing the task. Formally,
the framework F maps a task specification T to
a set of dialogues D:

F (T)→ D = {di, i ∈ 1 . . . N} (1)

di = [(ui1, . . . , u
i
ni
), (ai1, . . . , a

i
ni
)] (2)

Each dialogue di is a sequence of natural lan-
guage utterances (or dialogue turns) uij and their
corresponding annotations aij . A dialogue turn an-
notation aij includes the semantic parse of that turn
as well as additional information tied to that turn,
for example who spoke at that turn and the dia-
logue state at that point in the dialogue.

2.1 Dialogue task specification

The input to the framework is a task specifica-
tion obtained from the dialogue developer, which
defines the scope of the dialogue interactions for
the task in question. Dialogue agents can be em-
ployed to complete a wide variety of tasks. In this
work we focus on database querying applications,
which involve a relational database which contains
entities that the user would like to browse and se-
lect through a natural language dialogue. This for-
mulation covers a large variety of tasks that are
expected of automated dialogue agents, including
all tasks that map to filling a form and executing
a transaction on some website. The attributes of
the entities (i.e. columns of the database) induce

Figure 2: Example of generating an outline and its paraphrase. See text for details.

a schema S of “slots”. Each slot could be a con-
straint that the user cares about when selecting an
entity. The developer must provide an API client
C which can be queried with a SQL-like syntax to
return a list of matching candidate entities for any
valid combination of slot values. The task schema
and API client together form the task specification,
T = (S,C). (Figure 2a.)

Dialogues that involve procedural turn-taking
(for example reading out a recipe or playing text-
based games), or deal with unstructured knowl-
edge (for example question answering over a text
document), are among tasks that are not covered
by this formulation. These classes of dialogues
can be handled by modifying the self-play phase
of the framework to generate outlines for these di-
alogue types.

2.2 Outline generation via self-play
With the task specification, the framework must
generate a set of dialogues centered around that
task. We divide this into two separate steps, F =
F2 ◦ F1, where F1 maps the task specification to
a set of outlines O, and F2 maps each outline to a
natural language dialogue:

F1(T)→ O = {oi, i ∈ 1 . . . N} (3)

oi = [(ti1, . . . , t
i
ni
), (ai1, . . . , a

i
ni
)] (4)

F2({oi})→ {di} (5)

We define an outline oi as a sequence of tem-
plate utterances tij and their corresponding annota-
tions aij . Template utterances are simplistic state-
ments with language that is easy to generate with
a few rules, as we will describe below. An out-
line encapsulates the flow of the dialogue while
abstracting out the variation in natural language of

the surface forms of each dialogue turn. Outlines
are easier to generate using self-play between a
user bot and a system bot as the bots do not need to
generate complex and diverse language that mim-
ics real users and assistants.

To generate an outline, the framework first sam-
ples a scenario from the task specification. We
define a scenario as a user profile and user goals,
si = (pi, gi) (Figure 2b). In a goal-oriented di-
alogue, the user wants to accomplish goals with
the assistance of the dialogue agent, for example
booking movie tickets or reserving restaurant ta-
bles. Each goal is associated with constraints that
map to slots of the schema, for example the movie
name, genre, number of tickets, and price range.
The slots in a user goal can have fixed values (e.g.
genre should be “comedy” or the user will deny
the offer), a list of possible values (e.g. genre
should “comedy” or “action”), flexible values (e.g.
“comedy” is preferred, but the user is open to other
options), or open values (e.g. the user is open to
seeing movies of any genre). In the multi-domain
setting, a goal’s slot values can refer to previous
goals, for example the user may want to buy a
movie ticket and then get dinner after the movie at
a restaurant near the theatre chosen in the preced-
ing sub-dialogue. A scenario generator samples
goals gi from the task specification by randomly
choosing the constraint type and values for every
slot in the schema. The values are chosen from a
set that includes all available values in the database
as well as some non-existent values to create un-
satisfiable user goals.

In addition to the user goal, the flow of the di-
alogue is also dependent on the personality of the
user. A user could be verbose in specifying more
constraints in a single turn, or could prefer to give
each constraint separately. Similarly a user could

be more or less amenable to changing their goal
if their original constraints are not satisfiable. We
define a user profile vector pi to encapsulate all
the task-independent characteristics of the user’s
behavior. In its simplest version, pi could be mod-
eled as a vector of probabilities concerning in-
dependent aspects of the user’s behavior, which
could be passed into a programmed user simula-
tor. Alternatively, pi could be an embedding of a
user profile in a latent space, which could condi-
tion a learned user simulator model. In our setup,
the scenario generator samples pi from a manually
specified distribution of typical user profiles.

With the dialogue scenario si, the framework
performs dialogue self-play between a user bot
BU and system bot BS to generate a sequence of
turn annotations ai1 . . . a

i
ni

as follows:

BU = P (aij |ai1, . . . , aij−1, pi, gi) (6)

BS = P (aij+1|ai1, . . . , aij , S, C) (7)

Each turn annotation aij consists of a dialogue
frame that encodes the semantics of the turn as
a dialogue act and a slot-value map, for exam-
ple “inform(date=tomorrow, time=evening)” is a
dialogue frame that informs the system of the
user’s constraints for the date and time slots. Ta-
ble 4 in Appendix A has a full list of dialogue
acts. BU maps a (possibly empty) dialogue history
ai1 . . . a

i
j−1 and a scenario pi, gi to a distribution

over turn annotations for the next user turn. Sim-
ilarly, BS maps a dialogue history, task schema S
and API client C to a distribution over system turn
annotations. In dialogue self-play (Figure 2c), a
new turn annotation aij is iteratively sampled from
each bot until either the user’s goals are achieved
and the user exits the dialogue with a “bye()” act,
or a maximum number of turns are reached.

In our setup, BU is an agenda-based user sim-
ulator (Schatzmann et al. (2007)) with a modifi-
cation that the action selection model is condi-
tioned on the user profile in addition to the user
goal and dialogue history. BS is modeled as a fi-
nite state machine (Hopcroft et al. (2006)) which
encodes a set of task-independent rules for con-
structing system turns, with each turn consisting
of a response frame which responds to the user’s
previous turn, and an initiate frame which drives
the dialogue forward through a predetermined se-
quence of sub-dialogues. For database querying
applications, these sub-dialogues are: gather user

preferences, query a database via an API, offer
matching entities to the user, allow user to modify
preferences or request more information about an
entity, and finally complete the transaction (buy-
ing or reserving the entity). By exploring a range
of parameter values for BU and BS and sampling
a large number of outlines, dialogue self-play can
generate a diverse set of dialogue outlines for the
task.

Finally, a template utterance generator maps
each turn annotation to a template utterance, aij →
tij , using a domain-general grammar similar to the
one described in Wang et al. (2015). Alternatively,
the developer can provide a list of templates to use
for some or all of the dialogue frames, for example
if they want more control over the language used
in the system turns. The template utterances tij are
an important bridge between the turn annotation
aij and the corresponding natural language utter-
ance uij , since crowd workers may not understand
the annotations if presented in symbolic form.

2.3 Crowdsourced paraphrases

To obtain a natural language dialogue from its out-
line, F2(oi) → di, the framework employs crowd
sourcing to paraphrase template utterances tij into
more natural sounding utterances uij . The para-
phrase task is designed as a “contextual rewrite”
task where a crowd worker sees the full dialogue
template ti1 . . . t

i
ni

, and provides the natural lan-
guage utterances ui1 . . . u

i
ni

for each turn of the di-
alogue. A screenshot of the contextual rewrite task
interface is provided in Figure 3. This encourages
the crowd worker to inject linguistic phenomena
like coreference (“Reserve that restaurant”) and
lexical entrainment into the utterances. We show
the same outline to K > 1 crowdworkers to get
more diversity of natural language utterances for
the same dialogue, {uij}k.

Since tij and uij are paraphrases of each other,
the annotations aij automatically apply to uij , elim-
inating the need for an expensive annotation step.
In practice, for a fraction of the utterances, the
automatic annotation does not succeed either due
to crowd workers not following instructions prop-
erly or if the utterance contains a paraphrase of
a slot value, for example when the crowd worker
rephrases “between 5pm and 8pm” as “some time
in the evening”. We employ a second round of
crowdsourcing for validating the utterances. For
each uij , we ask two crowd workers if it has the

same meaning as the corresponding template tij ,
and we drop the utterance if either of the crowd
workers say no. Dialogues which end up having
no natural language utterance for at least one of
the turns are dropped from the dataset. For the
remaining utterances, slot values from the annota-
tion aij are tagged in the utterance with substring
match. If a slot value cannot be found automat-
ically, we show it to two crowd workers and ask
them to annotate the slot span. Alternatively, such
annotation errors be detected and corrected by ac-
tive learning (Hakkani-Tür et al. (2002); Tur et al.
(2003)).

2.4 Dataset expansion

The rewrites t → {u}k collected via the crowd-
sourcing step F2 can be compiled into a map
L(a) → {u}k. As an optional step, this map
could be leveraged to synthetically expand the
dataset beyond what is economically feasible to
collect via crowdsourcing. The self-play step F1

can be executed to generate a larger set of out-
lines OS >> O. For each turn annotation aij
of oi ∈ OS , a natural language utterance is sam-
pled4 from L(aij) to create the corresponding dia-
logue di ∈ DS >> D. Dialogues in the synthetic
set DS could have utterances that were written by
crowdworkers under a different context, so these
dialogues are of a slightly lower quality.

2.5 Model training

The dialogues di ∈ D (or DS) have natural lan-
guage turns along with annotations of dialogue
acts, slot spans, dialogue state and API state for
each turn. These labels are sufficient for train-
ing dialogue models from recent literature: either
component-wise models for language understand-
ing (Bapna et al. (2017)), state tracking (Rastogi
et al. (2017)), dialogue policy (Shah et al. (2016))
and language generation (Nayak et al. (2017)), or
end-to-end models (Wen et al. (2016)). Further,
we can construct a natural language user simu-
lator by combining UB with L(a), and use it to
train end-to-end dialogue models with reinforce-
ment learning (Liu et al. (2017)).

3 User simulation and dialogue self-play

Our framework hinges on having a generative
model of a user that is reasonably close to actual
users of the system. The motivation is that while

4If ai
j /∈ L, then oi is dropped from OS .

it is hard to develop precise models of user be-
havior customized for every type of dialogue in-
teraction, it is possible to create a domain-general
user simulator that operates at a higher level of
abstraction (dialogue acts) and encapsulates com-
mon patterns of user behavior for a broad class of
dialogue tasks. Seeding the user simulator with a
task-specific schema of intents, slot names and slot
values allows the framework to generate a variety
of dialogue flows tailored to that specific task. De-
veloping a general user simulator targeting a broad
class of tasks, for example database querying ap-
plications, has significant leverage as adding a new
conversational pattern to the simulator benefits the
outlines generated for dialogue interfaces to any
database or third-party API.

Another concern with the use of a user sim-
ulator is that it restricts the generated dialogue
flows to only those that are engineered into the
user model. In comparison, asking crowd work-
ers to converse without any restrictions could gen-
erate interesting dialogues that are not anticipated
by the dialogue developer. Covering complex in-
teractions is important when developing datasets
to benchmark research aimed towards building
human-level dialogue systems. However, we ar-
gue that for consumer-facing chatbots, the primary
aim is reliable coverage of critical user interac-
tions. Existing methods for developing chatbots
with engineered finite state machines implicitly
define a model of expected user behavior in the
states and transitions of the system agent. A user
simulator makes this user model explicit and is a
more systematic approach for a dialogue devel-
oper to reason about the user behaviors handled
by the agent. Similarly, having more control over
the dialogue flows present in the dataset ensures
that all and only expected user and system agent
behaviors are present in the dataset. Our crowd
sourcing setup obtains diverse natural language re-
alizations of the abstract dialogue flows generated
via self-play. A dialogue agent bootstrapped with
such a dataset can be deployed in front of users
with a guaranteed minimum task completion rate.
Subsequently, the dialogue agent can be directly
improved from real user interactions, for which
crowdsourcing is anyways an imperfect substitute.

The self-play step also uses a system bot BS

that generates valid system turns for a given task.
Since our framework uses a rule-based bot which
takes user dialogue acts as inputs and emits a neu-

ral network based dialogue agent that works with
natural language utterances, the framework effec-
tively distills expert knowledge into a learned neu-
ral network. The developer can customize the be-
havior of the neural agent by modifying the com-
ponent rules of BS . Further, the cost of developing
BS can be amortized over a large class of dialogue
tasks by building a domain-agnostic bot for han-
dling a broad task like database querying applica-
tions, similar to US . Finally, in contrast to a rule-
based bot, a neural dialogue agent is amenable to
further improvement from direct user interactions
via reinforcement learning (Su et al. (2016); Liu
et al. (2017)), opening up the possibility of life-
long improvement in the quality of the dialogue
agent.

4 Crowdsourcing

In the Wizard-of-Oz setting, the dialogue task
specification is used to construct tasks by sam-
pling slot values from the API client. A task is
then shown to a pair of crowd workers who are
asked to converse in natural language to complete
the task. Subsequently, the collected dialogues
are manually annotated with dialogue act and slot
span labels for training dialogue models. This
process is expensive as the two annotation tasks
given to crowd workers in the WOz setting are
difficult and therefore time consuming: identify-
ing the dialogue acts of an utterance requires un-
derstanding the precise meaning of each dialogue
act, and identifying all slot spans in an utterance
requires checking the utterance against all slots in
the schema. As a result, the crowdsourced anno-
tations may need to be cleaned by an expert. In
contrast, M2M significantly reduces the crowd-
sourcing expense by automatically annotating a
majority of the dialogue turns and annotating the
remaining turns with two simpler crowdsourcing
tasks, “Does this utterance contain this particular
slot value?” and “Do these two utterances have the
same meaning?”, which are more efficiently done
by an average crowd worker.

Further, the lack of control over crowd work-
ers’ behavior in the Wizard-of-Oz setting can lead
to dialogues that may not reflect the behavior of
real users, for example if the crowd worker pro-
vides all constraints in a single turn. Such low-
quality dialogues either need to be manually re-
moved from the dataset or the crowd participants
need to be given additional instructions or train-

Dataset Slots Train Dev Test

Restaurant
price range, location,
restaurant name, category,
num people, date, time

1116 349 775

Movie
theatre name, movie, date,
time, num people

384 120 264

Table 1: Dialogues collected with M2M.

ing to encourage better interactions (Asri et al.
(2017)). M2M avoids this issue by using dialogue
self-play to systematically generate all usable dia-
logue outlines, and simplifying the crowdsourcing
step to a dialogue paraphrase task.

5 Datasets

We are releasing5 two datasets totaling 3000 dia-
logues collected using M2M for the tasks of buy-
ing a movie ticket and reserving a restaurant ta-
ble. (Table 1). The datasets were collected by
first generating outlines using dialogue self-play
and then rewriting the template utterances using
crowd sourcing.

6 Evaluations

We present some experiments with the M2M
datasets to evaluate the M2M approach for collect-
ing dialogue datasets and training conversational
agents with that data.

6.1 Dialogue diversity
First we will investigate the claim that M2M leads
to higher coverage of dialogue features in the
dataset. We compare the M2M Restaurants train-
ing dialogues with the DSTC2 (Henderson et al.
(2013)) training set which also deals with restau-
rant reservations (Table 2). M2M compares fa-
vorably to DSTC2 on the ratio of unique uni-
grams and bigrams to total number of tokens in
the dataset, which signifies a greater variety of
surface forms as opposed to repeating the same
words and phrases. Similarly, we count the num-
ber of unique “transitions” at the semantic frame
level, defined as a pair of annotations ai, ai+1 of
contiguous turns. This gives a measure of diver-
sity of dialogue flows in the dataset. M2M has
3x the number of unique transitions per turn of
the dataset. We also count unique “subdialogues”,
i.e. sequences of transitions ai, ai+1, . . . , ai+k for
k = {3, 5}, and observe that M2M has fewer rep-
etitions of subdialogues compared to DSTC2.

5https://github.com/google-research-datasets/simulated-
dialogue

Metric DSTC2
(Train)

M2M Rest.
(Train)

Dialogues 1611 1116
Total turns 11670 6188
Total tokens 199295 99932
Avg. turns per dialogue 14.49 11.09
Avg. tokens per turn 8.54 8.07
Unique tokens /
Total tokens

0.0049 0.0092

Unique bigrams /
Total tokens

0.0177 0.0670

Unique transitions /
Total turns

0.0982 0.2646

Unique subdialogues(k=3) /
Total subdialogues(n=3)

0.1831 0.3145

Unique subdialogues(k=5) /
Total subdialogues(n=5)

0.5621 0.7061

Unique full outlines /
Total dialogues

0.9243 0.9292

Table 2: Comparing DSTC2 and M2M Restaurants
datasets on diversity of language and dialogue flows.

6.2 Human evaluation of dataset quality

For a subjective evaluation of the quality of the
M2M datasets, we ran an experiment showing the
final dialogues to crowd workers and asking them
to rate each user and system turn between 1 to 5
on multiple dimensions. Figure 4 in the Appendix
presents the interface shown to crowd workers for
collecting the ratings. Each turn was shown to 3
crowd workers. Table 3 presents the mean and
standard deviation of ratings aggregated over all
turns of the datasets.

7 Related work and discussion

We presented M2M, an extensible framework
for rapidly bootstrapping goal-oriented conversa-
tional agents. Comparisons with the popular Dia-
log State Tracking Challenge 2 dataset (Henderson
et al. (2013)) show that M2M can be leveraged for
rapidly creating high-quality datasets for training
conversational agents in arbitrary domains. A key
benefit of our framework is that it is fully control-
lable via multiple knobs: the task schema, the sce-
nario generator, the user profile and behavior, the
system policy and the template generator. PyDial
(Ultes et al. (2017)), an extensible open-source
toolkit which provides domain-independent im-
plementations of dialogue system modules, could
be extended to support M2M by adding dialogue
self-play functionality.

The user and system bots in this work are imple-

M2M
Restaurants

M2M
Movies

User:
Natural 4.66 (0.54) 4.70 (0.49)
System:
Polite 4.23 (0.62) 4.27 (0.62)
Clear 4.72 (0.52) 4.75 (0.48)
Optimal 4.26 (0.76) 4.32 (0.75)

Table 3: Human evaluation of dialogues collected with
M2M. Average of crowd worker scores (from 1 to 5) for
user and system turns (standard deviation in brackets).

mented using task-general rules so that any trans-
actional or form-filling task could be handled with
only the task schema. For more complex tasks,
the developer can extend the user and system bots
or the canonical utterance generator by adding
their own rules. These components could also
be replaced by machine learned generative mod-
els if available. Task Completion Platform (TCP)
(Crook et al. (2016)) introduced a task configura-
tion language for building goal-oriented dialogue
interactions. The state update and policy modules
of TCP could be used to implement bots that gen-
erate outlines for complex tasks.

ParlAI (Miller et al. (2017)), a dialogue research
software platform, provides easy integration with
crowd sourcing for data collection and evaluation.
However, the crowd sourcing tasks are open-ended
and may result in lower quality dialogues as de-
scribed in Section 4. The crowd sourcing tasks in
M2M are configured to be at a suitable difficulty
level for crowd workers as they are neither open-
ended nor too restrictive. The crowd workers are
asked to paraphrase utterances instead of coming
up with completely new ones.

Acknowledgements

We thank Georgi Nikolov, Amir Fayazi, Anna
Khasin and Grady Simon for valuable support in
design, implementation and evaluation of M2M.

References
Layla El Asri, Hannes Schulz, Shikhar Sharma,

Jeremie Zumer, Justin Harris, Emery Fine, Rahul
Mehrotra, and Kaheer Suleman. 2017. Frames: A
corpus for adding memory to goal-oriented dialogue
systems. arXiv preprint arXiv:1704.00057 .

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Sequential dialogue context
modeling for spoken language understanding. In
Proc. of SIGDIAL.

PA Crook, A Marin, V Agarwal, K Aggarwal, T Anas-
tasakos, R Bikkula, D Boies, A Celikyilmaz,
S Chandramohan, Z Feizollahi, et al. 2016. Task
completion platform: A self-serve multi-domain
goal oriented dialogue platform. NAACL HLT 2016
page 47.

Dilek Hakkani-Tür, Giuseppe Riccardi, and Allen
Gorin. 2002. Active learning for automatic speech
recognition. In Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2002 IEEE International Confer-
ence on. IEEE, volume 4, pages IV–3904.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013. Dialog state tracking challenge 2 &
3. http://camdial.org/˜mh521/dstc/.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ull-
man. 2006. Introduction to Automata Theory, Lan-
guages, and Computation (3rd Edition). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth
Shah, and Larry Heck. 2017. End-to-end optimiza-
tion of task-oriented dialogue model with deep re-
inforcement learning. In NIPS Conversational AI
Workshop.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476 .

Neha Nayak, Dilek Hakkani-Tur, Marilyn Walker, and
Larry Heck. 2017. To plan or not to plan? dis-
course planning in slot-value informed sequence to
sequence models for language generation. In Proc.
of Interspeech.

Abhinav Rastogi, Dilek Hakkani-Tur, and Larry Heck.
2017. Scalable multi-domain dialogue state track-
ing. In Proc. of IEEE ASRU.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Human Language Technologies 2007: The
Conference of the North American Chapter of the
Association for Computational Linguistics; Com-
panion Volume, Short Papers. Association for Com-
putational Linguistics, pages 149–152.

Pararth Shah, Dilek Hakkani-Tür, and Larry Heck.
2016. Interactive reinforcement learning for task-
oriented dialogue management. In NIPS Deep
Learning for Action and Interaction Workshop.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. Nature 529(7587):484–489.

David Silver, Thomas Hubert, Julian Schrittwieser,
Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, et al. 2017. Mastering chess
and shogi by self-play with a general rein-
forcement learning algorithm. arXiv preprint
arXiv:1712.01815 .

PH Su, M Gašić, N Mrkšić, L Rojas-Barahona, S Ultes,
D Vandyke, TH Wen, and S Young. 2016. On-
line active reward learning for policy optimisation in
spoken dialogue systems. In 54th Annual Meeting of
the Association for Computational Linguistics, ACL
2016-Long Papers. volume 4, pages 2431–2441.

Gokhan Tur, Robert E Schapire, and Dilek Hakkani-
Tur. 2003. Active learning for spoken language
understanding. In Acoustics, Speech, and Signal
Processing, 2003. Proceedings.(ICASSP’03). 2003
IEEE International Conference on. IEEE, volume 1,
pages I–I.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Inigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. Proceed-
ings of ACL 2017, System Demonstrations pages 73–
78.

Yushi Wang, Jonathan Berant, Percy Liang, et al. 2015.
Building a semantic parser overnight. ACL .

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. ACL .

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
arXiv preprint arXiv:1709.00103 .

A Supplemental Material

Table 4 lists the dialogue acts used in our setup.
The dialogue acts are based on the Cambridge dia-
logue act set. Table 5 presents a full dialogue out-
line and corresponding paraphrase for a dialogue
spanning two interdependent tasks, where the user
wants to first buy movie tickets and then reserve a
restaurant table for dinner after the movie.

Figure 3 presents the interface shown to crowd
workers for the dialogue rewrite task, and includes
a sample dialogue outline (consisting of template
utterances) and its paraphrase into natural lan-
guage. Figure 4 presents the interface shown to
crowd workers for evaluating the quality of dia-
logues collected with M2M.

http://camdial.org/~mh521/dstc/

Table 4: List of dialogue acts.
Dialogue Act Speaker Description

GREETING User/System Greet the other speaker
INFORM User/System Inform a slot value
CONFIRM User/System Ask the other speaker to confirm a given slot value
REQUEST User/System Ask for the value of a slot
REQUEST ALTS User Ask for more alternatives
OFFER System Offer a database entity to the user
SELECT System Offer more than one database entity to the user
AFFIRM User/System Agree to something said by the other speaker
NEGATE User/System Disagree to something said by the other speaker
NOTIFY SUCCESS System Notify the user of a successful event, e.g. a booking is complete
NOTIFY FAILURE System Notify the user of a failure event, e.g. a booking isn’t available
THANK YOU User/System Thank the other speaker
GOOD BYE User/System Say goodbye to the other speaker
CANT UNDERSTAND User/System Tell the other speaker that their utterance was not understood
OTHER User Unknown utterance type

Table 5: Sample multi-domain dialogue outline and paraphrase.
Outline Paraphrase

Annotation (ai) Template utterances (ti) NL utterances (ui)
S: greeting() Greeting. Hi, how can I help you?
U: inform(intent=book movie,
name=Inside Out, date=tomorrow,
num tickets=2)

Book movie with name is
Inside Out and date is tomorrow
and num tickets is 2.

I want to buy 2 tickets for Inside
Out for tomorrow.

S: ack() request(time) OK. Provide time.
Alright. What time would you like
to see the movie?

U: inform(time=evening) Time is evening.
Anytime during the evening works
for me.

S: offer(theatre=Cinemark 16,
time=6pm)

Offer theatre is Cinemark 16 and
time is 6pm.

How about the 6pm show at
Cinemark 16?

U: affirm() Agree. That sounds good.
S: notify success() Reservation confirmed. Your tickets have been booked!
U: inform(intent=find restaurant,
meal=dinner, location=near the
theatre)

Find restaurant with meal is dinner
and location is near the theatre.

I want to get dinner at a restaurant
near the theatre.

S: request(cuisine, price range) Provide cuisine and price range.
Do you have any preference for
cuisine or price range?

U: inform(cuisine=DontCare,
price range=moderate, rating=high)

Cuisine is I don’t care and price
range is moderate and rating is high.

I’m fine with any cuisine. Look for
something moderately priced, but
make sure it has a high rating.

S: select(restaurant={First Wok,
Lucy’s Grill}, location=near the
theatre)

Select restaurant from First Wok,
Lucy’s Grill with location is near the
theatre.

First Wok and Lucy’s Grill are
some good options near the
theatre.

U: inform(intent=reserve restaurant,
restaurant=First Wok, time=after the
movie)

Reserve restaurant with restaurant is
First Wok and time is after the
movie.

First Wok sounds perfect. Can you
reserve a table there for dinner
after the movie?

S: ack() confirm(restaurant=First
Wok, time=8pm, num people=2)

OK. Confirm restaurant is First Wok
and time is 8pm and num people is 2.

Sure. Please confirm that it is a table
for 2 at First Wok for 8pm.

U: affirm() Agree. That is correct.
S: notify success() Reservation confirmed. Your table has been reserved.
U: thank you() good bye() Thank you and good bye. Thanks! That’s all for now.

Figure 3: Contextual rewrite task interface for paraphrasing a dialogue outline with natural language.

Figure 4: Dialogue quality evaluation task interface for rating the user and system turns of completed dialogues.

