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Planning in Neural Models
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Data

Examples elicited for all possible combinations
of scalar slots, with all possible value assign-
ments. Total: 1662 examples.

Slot Possible value

Name Au Midi
categorical | Neigborhood Midtown

Cuisine French

Decor excellent
scalar Food quality good

Service decent

Value for money | mediocre

Evaluation

e Objective: Slot precision, slot recall, scalar
precision (% slots with correct values)

e Subjective: Naturalness, Syntax, Overall rat-
ings (comparing 3 utterances)

e Baselines: Utterance sampled from training
set; HUMAN-S: with correct slots and values;
HUMAN-G: with correct slots and any values
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Results
Slot Prec. | Scalar Prec. | Slot Rec. | Naturalness | Syntax | Overall | #uniqg. sents
Results for mention representation and plan SEQ 1.0 0.6 92.24% | 2.72 3.04 2.75 100
supervision. * indicates CONCAT values sig- Mention |31 19 0.5 50.26% | 242 2> | 24 | 10
T A S representation | CONCAT 1.0 0.98 95.33% 2.80 2.98 2.87 126
nificantly better than SEQ; { indicates signifi- HUMAN-G 1.0 1.0 04.98% | 2.65 2.93 2.76 313
cantly better than HUMAN-S (bOth n < 0.05). HUMAN-S 1.0 1.0 95.29% 2.64 2.87 2.79 325
C g NONE - - 97.22% 2.69 2.80 2.68 126
Bold values of POSITIONAL are significantly y 23?3 . T - - 96.99% T 068 503 o 5
better than NONE. (p < 0.05). P POSITIONAL | - _ 96.99% | 2.74 3.02 281 144
HUMAN-S - - 96.01% 272 2.91 2.83 325
Observations Conclusions

e Model gravitates towards “safe’, commonly occurring, grammatical occurrences
e Scores higher than human baseline on average for naturalness, syntax

e Human baselines still produce higher diversity: CONCAT and HUMAN-S produced a total of 126
and 325 unique sentences in the test set, respectively.

e 4 most frequent sentence plans account for 524 utterances (of total 1662 utterances)

e Conditioning on slot values helps tackle
scalar valued slots

¢ Adding planning information can help
increase diversity and perceived quality




